【數學】多元函數微分學(宇哥筆記)

多元微分學

在這裏插入圖片描述

概念

二重極限

ϵ > 0 , δ > 0 , 0 < ( x x 0 ) 2 + ( y y 0 ) 2 < δ f ( x , y ) A < ϵ , A f ( x , y ) ( x 0 , y 0 ) [ ] ( 1 ) { x x 0 ( 2 ) y = k x x = y 2 使 lim x 0 , y 0 f ( x , y ) 使 lim x 0 , y 0 f ( x , y ) lim x 0 , y 0 f ( x , y ) ( 3 ) ( 4 ) ( 5 ) f ( x , y ) 使 ( x , y ) ( 0 , 0 ) f ( x , y ) = P ( x , y ) Q ( x , y ) = m n , 1. m > n Q ( 1 , y ) = 0 Q ( x , 1 ) = 0 lim x 0 , y 0 f ( x , y ) = 0 ; Q ( 1 , y ) = 0 Q ( x , 1 ) = 0 lim x 0 , y 0 f ( x , y ) 2. m n lim x 0 , y 0 f ( x , y ) \begin{aligned} &若對\forall\epsilon>0,\exists\delta>0,當0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta時,\\ &恆有|f(x,y)-A|<\epsilon,則稱A是f(x,y)在(x_0,y_0)點的極限\\ [注](1)&\begin{cases}一元極限中x\to x_0有且僅有兩種方式\\二元極限中有無窮任意多種方式\end{cases}\\ (2)&若有兩條不同路徑(如直線y=kx,拋物線x=y^2)使極限\lim_{{x\to0,y\to0}}f(x,y)值不相等\\ &或某一條路徑使極限\lim_{{x\to0,y\to0}}f(x,y)值不存在,則說明二重極限\lim_{{x\to0,y\to0}}f(x,y)不存在\\ (3)&主要方法:化成一元極限、等價代換、無窮小乘有界、夾逼準則\\ (4)&二重極限保持了一元極限的各種性質,如唯一性、局部有界性、局部保號性及運算性質\\ (5)&所求極限得二元函數f(x,y)如果使齊次有理式函數,即分子、分母分別均是齊次有理函數,\\ &考察(x,y)\to(0,0)時得極限,可用下述命題:\\ &設f(x,y)=\frac{P(x,y)}{Q(x,y)}=\frac{m次}{n次},其中分子分母是互質多項式,則\\ &1.當m>n時,若方程Q(1,y)=0與Q(x,1)=0均無實根,則\lim_{{x\to0,y\to0}}f(x,y)=0;\\ &若方程Q(1,y)=0與Q(x,1)=0有實根,則\lim_{{x\to0,y\to0}}f(x,y)不存在\\ &2.當m\leq n時,\lim_{{x\to0,y\to0}}f(x,y)不存在\\ \end{aligned}

[ 3 ] 1. lim x 0 , y 0 x 2 + y 2 sin x 2 + y 2 ( x 2 + y 2 ) 3 x 2 + y 2 = t , I = lim t 0 t sin t t 3 = 1 6 2. lim x 0 , y 0 sin x y y = lim x 0 , y 0 x y y = lim x 0 , y 0 x = 0 3. lim x 0 , y 0 x y 2 x 2 + y 2 = lim x 0 , y 0 x y 2 x 2 + y 2 = 0 [ 5 ] 1. lim x 0 , y 0 x 3 + y 3 x 2 + y 2 m = 3 > n = 2 , Q ( 1 , y ) = 1 + y 2 = 0 Q ( x , 1 ) = x 2 + 1 = 0       I = 0 2. lim x 0 , y 0 x y x + y m = 2 > n = 1 , Q ( 1 , y ) = 1 + y = 0       3. lim x 0 , y 0 x + y x y m = 1 = n = 1       4. lim x 0 , y 0 x 2 + y 2 x 3 + y 3 m = 2 < n = 3       [ 2 ] lim x 0 , y 0 x 2 y x 4 + y 2 I y = k b = lim x 0 k x 3 x 4 + k 2 x 2 = lim x 0 k x x 2 + k 2 = 0 I y = x 2 lim x 0 x 4 x 4 + x 4 = 1 2 \begin{aligned} &\color{blue}[注3相關]\\ 1.&\color{maroon}\lim_{{x\to0,y\to0}}\frac{\sqrt{x^2+y^2}-\sin\sqrt{x^2+y^2}}{(\sqrt{x^2+y^2})^3}\\ &令\sqrt{x^2+y^2}=t,則I=\lim_{t\to0}\frac{t-\sin t}{t^3}=\frac16\\ 2.&\color{maroon}\lim_{{x\to0,y\to0}}\frac{\sin xy}{y}\\ &=\lim_{{x\to0,y\to0}}\frac{xy}{y}=\lim_{{x\to0,y\to0}}x=0\\ 3.&\color{maroon}\lim_{{x\to0,y\to0}}\frac{xy^2}{x^2+y^2}=\lim_{{x\to0,y\to0}}x\cdot\frac{y^2}{x^2+y^2}=0\\ &\color{blue}[注5相關]\\ 1.&\color{maroon}\lim_{{x\to0,y\to0}}\frac{x^3+y^3}{x^2+y^2}\\ & m=3>n=2,且Q(1,y)=1+y^2=0和Q(x,1)=x^2+1=0 無實根\implies I=0\\ 2.&\color{maroon}\lim_{{x\to0,y\to0}}\frac{xy}{x+y}\\ & m=2>n=1,且Q(1,y)=1+y=0有實根\implies 不\exists\\ 3.&\color{maroon}\lim_{{x\to0,y\to0}}\frac{x+y}{x-y}\\ & m=1=n=1\implies 不\exists\\ 4.&\color{maroon}\lim_{{x\to0,y\to0}}\frac{x^2+y^2}{x^3+y^3}\\ & m=2<n=3 \implies 不\exists\\ &\color{blue}[注2相關]\\ &\color{maroon}證明\lim_{{x\to0,y\to0}}\frac{x^2y}{x^4+y^2}不存在\\ &I\underrightarrow{y=kb}=\lim_{x\to0}\frac{kx^3}{x^4+k^2x^2}=\lim_{x\to0}\frac{kx}{x^2+k^2}=0\\ &I\underrightarrow{y=x^2}\lim_{x\to0}\frac{x^4}{x^4+x^4}=\frac12\\ &\therefore 二元極限不存在\\ \end{aligned}

連續

lim x 0 , y 0 f ( x , y ) = f ( x 0 , y 0 ) , f ( x , y ) ( x 0 , y 0 ) [ ] \begin{aligned} &若\lim_{{x\to0,y\to0}}f(x,y)=f(x_0,y_0),則稱f(x,y)在點(x_0,y_0)處連續\\ &[注]不討論間斷點 \end{aligned}

偏導數

z = f ( x , y ) ( x 0 , y 0 ) f x ( x 0 , y 0 ) = lim Δ x 0 f ( x 0 + Δ x , y 0 ) f ( x 0 , y 0 ) Δ x = lim x x 0 f ( x , y 0 ) f ( x 0 , y 0 ) x x 0 f y ( x 0 , y 0 ) = lim Δ y 0 f ( x 0 , y 0 + Δ y ) f ( x 0 , y 0 ) Δ y = lim y y 0 f ( x 0 , y ) f ( x 0 , y 0 ) y y 0 1. : f x ( x 0 , y 0 ) = φ ( x ) x = x 0 = [ f ( x , y 0 ) ] x x 0 f y ( x 0 , y 0 ) = φ ( y ) y = y 0 = [ f ( x 0 , y ) ] y y 0 2. f ( x , y ) f x ( x , y ) f ( x , y ) y y \begin{aligned} &z=f(x,y)在(x_0,y_0)處的偏導數\\ &f'_x(x_0,y_0)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=\lim_{x\to x_0}\frac{f(x,y_0)-f(x_0,y_0)}{x-x_0}\\ &f'_y(x_0,y_0)=\lim_{\Delta y\to0}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}=\lim_{y\to y_0}\frac{f(x_0,y)-f(x_0,y_0)}{y-y_0}\\ &1.偏導數實際上就是對應一元函數得導數,如:\\ &f_x'(x_0,y_0)=\varphi'(x)|_{x=x_0}=[f(x,y_0)]'|_{x\to x_0}\\ &f_y'(x_0,y_0)=\varphi'(y)|_{y=y_0}=[f(x_0,y)]'|_{y\to y_0}\\ &2.求f(x,y)的偏導數只需先把其中一個變量視爲常數即可,\\ &如求f_x'(x,y)時,把f(x,y)中的y先視爲常數,y偏導同理。 \end{aligned}

1. f ( x , y ) = x 2 + ( y 1 ) arcsin y x , f x ( 2 , 1 ) = f ( x , 1 ) = x 2       f x ( 2 , 1 ) = ( x 2 ) x = 2 = 4 2. f ( x , y ) = e x x y , f x = e x ( x y ) e x ( 1 0 ) ( x y ) 2 f y = 0 e x ( 0 1 ) ( x y ) 2       f x + f y = e x x y = f 3. f ( x , y ) = e x + y [ x 1 3 ( y 1 ) 1 3 + y 1 3 ( x 1 ) 2 3 ] , ( 0 , 1 ) f x ( 0 , 1 ) = , f y ( 0 , 1 ) = y = 1       f ( x , 1 ) = e x + 1 ( x 1 ) 2 3       f x ( x , 1 ) = e x + 1 ( x 1 ) 2 3 + e x + 1 2 3 ( x 1 ) 1 3 x = 0       f x ( 0 , 1 ) = e + e ( 2 3 ) = e 3 f y ( x 0 , y 0 ) = lim Δ y 0 f ( x 0 , y 0 + Δ y ) f ( x 0 , y 0 ) Δ y x = 0       f ( 0 , y ) = e y y 1 3       f y ( 0 , y ) = e y y 1 3 + e y 1 3 y 2 3 y = 1 , f y ( 0 , 1 ) = e + e 1 3 = 4 3 e \begin{aligned} 1.&\color{maroon}設f(x,y)=x^2+(y-1)\arcsin\sqrt{\frac yx},則\frac{\partial f}{\partial x}|_{(2,1)}=\\ &f(x,1)=x^2\implies \frac{\partial f}{\partial x}|_{(2,1)}=(x^2)'|_{x=2}=4\\ 2.&\color{maroon}設f(x,y)=\frac{e^x}{x-y},則\underline{\quad}\\ &f'_x=\frac{e^x\cdot(x-y)-e^x\cdot(1-0)}{(x-y)^2}\\ &f'_y=\frac{0-e^x\cdot(0-1)}{(x-y)^2}\\ &\implies f'_x+f'_y=\frac{e^x}{x-y}=f\\ 3.&\color{maroon}設f(x,y)=e^{x+y}[x^{\frac13}(y-1)^{\frac13}+y^{\frac13}(x-1)^{\frac23}],則在點(0,1)處的兩個偏導數f_x'(0,1)=\underline{\quad},f_y'(0,1)=\underline{\quad}\\ &令y=1\implies f(x,1)=e^{x+1}(x-1)^{\frac23}\\ &\implies f_x'(x,1)=e^{x+1}(x-1)^\frac23+e^{x+1}\frac23(x-1)^{-\frac13}\\ &令x=0\implies f_x'(0,1)=e+e\cdot(-\frac23)=\frac e3\\ &f_y'(x_0,y_0)=\lim_{\Delta y\to0}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}\\ &令x=0\implies f(0,y)=e^y\cdot y^{\frac13}\implies f_y'(0,y)=e^y\cdot y^{\frac13}+e^y\cdot\frac13y^{-\frac23}\\ &令y=1,f_y'(0,1)=e+e\cdot\frac13=\frac43e\\ \end{aligned}

可微

f ( x , y ) ( x 0 , y 0 ) f x ( x 0 , y 0 ) f y ( x 0 , y 0 ) , lim x 0 , y 0 f ( x , y ) f ( x 0 , y 0 ) f x ( x 0 , y 0 ) ( x x 0 ) f y ( x 0 , y 0 ) ( y y 0 ) ( x x 0 ) 2 + y y 0 ) 2 = 0 ? 0 0 \begin{aligned} &判定二元函數f(x,y)在點(x_0,y_0)是否可微的方法\\ &先求f_x'(x_0,y_0)與f_y'(x_0,y_0),若有一個不存在,則直接不可微;\\ &若都存在,則檢查\lim_{{x\to0,y\to0}}\frac{f(x,y)-f(x_0,y_0)-f_x'(x_0,y_0)(x-x_0)-f_y'(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0?\\ &若等於0,則可微,若不等於0或不存在,則不可微。\\ \end{aligned}

1. f ( x , y ) = { x 2 y x 2 + y 2 , ( x , y ) ( 0 , 0 ) 0 , ( x , y ) = ( 0 , 0 ) ( 0 , 0 ) f x ( 0 , 0 ) = lim x 0 f ( x , 0 ) f ( 0 , 0 ) x = lim x 0 0 0 x = 0 ( ) f y ( 0 , 0 ) = 0 ( ) lim x 0 , y 0 f ( x , y ) f ( 0 , 0 ) 0 x 2 + y 2 = lim x 0 , y 0 x 2 y ( x 2 + y 2 ) 3 / 2 ( m = 3 = n = 3 ) f ( x , y ) ( 0 , 0 ) \begin{aligned} 1.&\color{maroon}討論f(x,y)=\begin{cases}\frac{x^2y}{x^2+y^2},(x,y)\neq(0,0)\\0,(x,y)=(0,0)\end{cases}在(0,0)點可微性\\ &f_x'(0,0)=\lim_{x\to0}\frac{f(x,0)-f(0,0)}x=\lim_{x\to0}\frac{0-0}{x}=0(\exists)\\ &同理f_y'(0,0)=0(\exists)\\ &\lim_{{x\to0,y\to0}}\frac{f(x,y)-f(0,0)-0}{\sqrt{x^2+y^2}}=\lim_{{x\to0,y\to0}}\frac{x^2y}{(x^2+y^2)^{3/2}}\\ &(m=3=n=3)故f(x,y)在(0,0)處不可微\\ \end{aligned}

概念之間的關係

兩個偏導數連續→二元函數可微→二元函數連續→極限存在 且 二元函數可偏導

1. f ( x , y ) ( x , y ) f ( x . y ) x > 0 , f ( x . y ) y < 0 , A . f ( 0 , 0 ) > f ( 1 , 1 ) B . f ( 0 , 0 ) < f ( 1 , 1 ) C . f ( 0 , 1 ) > f ( 1 , 0 ) D . f ( 0 , 1 ) < f ( 1 , 0 ) x 調 y 調 D 2. f ( x , y ) = e x 2 + y 4 , f ( x , 0 ) = e x x = 0       f x ( 0 , 0 ) f ( 0 , y ) = e y 2 y = 0       f y ( 0 , 0 ) 3. f ( x , y ) = { x 2 y 2 x 2 + y 2 , ( x , y ) ( 0 , 0 ) 0 , ( x , y ) = ( 0 , 0 ) , f ( x , y ) ( 0 , 0 ) lim x 0 , y 0 f ( x , y ) = lim x 0 , y 0 x 2 y 2 x 2 + y 2 = 0 = f ( 0 , 0 ) , f x ( 0 , 0 ) = lim x 0 f ( x , 0 ) f ( 0 , 0 ) x = lim x 0 0 0 x = 0 f y ( 0 , 0 ) = 0 lim x 0 , y 0 f ( x , y ) f ( 0 , 0 ) 0 x + y 2 = lim x 0 , y 0 x 2 y 2 ( x 2 + y 2 ) 3 / 2 = 0       f ( x , y ) ( 0 , 0 ) 4. ( a x y 3 y 2 cos x ) d x + ( 1 + b y sin x + 3 x 2 y 2 ) d y u ( x , y ) u x = a x y 3 y 2 cos x u y = 1 + b y sin x + 3 x 2 y 2       2 u x y = 3 a x y 2 2 y cos x       2 u y x = b y cos x + 6 x y 2       a = 2 , b = 2 \begin{aligned} 1.&\color{maroon}設f(x,y)具有一階連續偏導數,且對任意的(x,y)都有\frac{\partial f(x.y)}{\partial x}>0,\frac{\partial f(x.y)}{\partial y}<0,則\\ &A.f(0,0)>f(1,1)\quad B.f(0,0)<f(1,1)\quad C.f(0,1)>f(1,0)\quad D.f(0,1)<f(1,0)\\ &由題意,得對x單調遞增;對y單調遞減\\ &畫圖可得D\\ 2.&\color{maroon}設f(x,y)=e^{\sqrt{x^2+y^4}},則\\ &f(x,0)=e^{|x|}在x=0處不可導\implies\frac{\partial f}{\partial x}|_{(0,0)}不\exists\\ &f(0,y)=e^{y^2}在y=0處可導\implies \frac{\partial f}{\partial y}|_{(0,0)}\exists\\ 3.&\color{maroon}設f(x,y)=\begin{cases}\frac{x^2y^2}{x^2+y^2},(x,y)\neq(0,0)\\0,(x,y)=(0,0)\end{cases},討論f(x,y)在點(0,0)的連續性、可導性及可微性\\ &\lim_{{x\to0,y\to0}}f(x,y)=\lim_{{x\to0,y\to0}}\frac{x^2y^2}{x^2+y^2}=0=f(0,0),故連續\\ &f_x'(0,0)=\lim_{x\to0}\frac{f(x,0)-f(0,0)}x=\lim_{x\to0}\frac{0-0}{x}=0\quad\exists\\ &由對稱性可知,f_y'(0,0)=0\quad\exists\\ &\lim_{{x\to0,y\to0}}\frac{f(x,y)-f(0,0)-0}{\sqrt{x^+y^2}}=\lim_{{x\to0,y\to0}}\frac{x^2y^2}{(x^2+y^2)^{3/2}}=0\\ &\implies f(x,y)在(0,0)處可微\\ 4.&\color{maroon}已知(axy^3-y^2\cos x)dx+(1+by\sin x+3x^2y^2)dy爲某一函數u(x,y)的全微分,則\\ &\frac{\partial u}{\partial x}=axy^3-y^2\cos x\\ &\frac{\partial u}{\partial y}=1+by\sin x+3x^2y^2\\ &\implies \frac{\partial^2u}{\partial x\partial y}=3axy^2-2y\cos x\\ &\implies \frac{\partial^2u}{\partial y\partial x}=by\cos x+6xy^2\\ &\implies a=2,b=-2\\ \end{aligned}

計算

鏈式求導規則+高階偏導複合結構不變

z
u
v
x
y

1. z = f ( u , v , x ) , u = u ( x , y ) , v = v ( y ) z x z y z x = f 1 u x + f 3 1 z y = f 1 u y + f 2 d v d y [ ] u , v d 2. z = f ( e x sin y , x 2 + y 2 ) , f 2 z x y z x = f 1 e x sin y + f 2 2 x 2 z x y = ( f 11 e x cos y + f 12 2 y ) e x sin y + f 1 e x cos y + 2 x ( f 21 e x cos y + f 22 2 y ) = e 2 x sin y cos y f 11 + ( 2 y e x sin y + 2 x e x cos y ) f 12 + e x cos y f 1 + 4 x y f 22 3. z = f ( u , v , x ) , u = x e y , f 2 z x y z x = f 1 e y + f 2 1 2 z x y = ( f 11 x e y + f 13 1 ) e y + f 1 e y + ( f 21 x e y + f 23 1 ) 4. z = f ( 2 x y ) + g ( x , x y ) , f g 2 z x y z x = f 2 + g 1 1 + g 2 y 2 z x y = 2 f ( 1 ) + g 12 x + g 22 x y + g 2 1 5. F ( u , v ) z = F ( y x , x 2 + y 2 ) , 2 z x y z x = F 1 ( y x 2 ) + F 2 2 x 2 z x y = ( z x ) y = ( F 1 ( y x 2 ) ) y + ( F 2 2 x ) y = F 1 y ( y x 2 ) + F 1 ( 1 x 2 ) + 2 x F 2 y = ( F 11 ( 1 x ) + F 12 2 y ) ( y x 2 ) + F 1 ( 1 x 2 ) + 2 x ( F 21 ( 1 x ) + F 22 2 y ) \begin{aligned} 1.&\color{maroon}設z=f(u,v,x),u=u(x,y),v=v(y)都是可微函數,求\frac{\partial z}{\partial x}和\frac{\partial z}{\partial y}\\ &\frac{\partial z}{\partial x}=f_1'\cdot\frac{\partial u}{\partial x}+f_3'\cdot1\\ &\frac{\partial z}{\partial y}=f_1'\frac{\partial u}{\partial y}+f_2'\cdot\frac{dv}{dy}\\ &\color{grey}[注]u是二元\to \partial,v是一元\to d\\ 2.&\color{maroon}設z=f(e^x\sin y,x^2+y^2),其中f具有二階連續偏導數,求\frac{\partial^2 z}{\partial x\partial y}\\ &\frac{\partial z}{\partial x}=f_1'\cdot e^x\sin y+f_2'\cdot2x\\ &\frac{\partial^2z}{\partial x \partial y}=(f_{11}''\cdot e^x\cos y+f_{12}''\cdot2y)\cdot e^x\sin y+f_1'\cdot e^x\cos y+2x(f_{21}''\cdot e^x\cos y+f_{22}''\cdot2y)\\ &=e^{2x}\sin y\cos y\cdot f_{11}''+(2ye^x\sin y+2xe^x\cos y)\cdot f_{12}''+e^x\cos y f_1'+4xyf_{22}''\\ 3.&\color{maroon}設z=f(u,v,x),u=xe^y,其中f具有二階連續偏導數,求\frac{\partial^2z}{\partial x\partial y}\\ &\frac{\partial z}{\partial x}=f_1'\cdot e^y+f_2'\cdot1\\ &\frac{\partial^2z}{\partial x \partial y}=(f_{11}''\cdot xe^y+f_{13}''\cdot1)\cdot e^y+f_1'\cdot e^y+(f_{21}''\cdot xe^y+f_{23}''\cdot1)\\ 4.&\color{maroon}設z=f(2x-y)+g(x,xy),其中f二階可導,g具有二階連續偏導數,求\frac{\partial^2z}{\partial x \partial y}\\ &\frac{\partial z}{\partial x}=f'\cdot2+g_1'\cdot1+g_2'\cdot y\\ &\frac{\partial^2z}{\partial x\partial y}=2f''\cdot(-1)+g_{12}''\cdot x+g_{22}''\cdot x\cdot y+g_2'\cdot1\\ 5.&\color{maroon}設F(u,v)二階偏導連續,並設z=F(\frac yx,x^2+y^2),求\frac{\partial^2z}{\partial x\partial y}\\ &\frac{\partial z}{\partial x}=F_1'(-\frac{y}{x^2})+F_2'\cdot 2x\\ &\frac{\partial^2z}{\partial x\partial y}=\frac{\partial(\frac{\partial z}{\partial x})}{\partial y}=\frac{\partial(F_1'\cdot(-\frac y{x^2}))}{\partial y}+\frac{\partial(F_2'\cdot2x)}{\partial y}\\ &=\frac{\partial F_1'}{\partial y}(-\frac y{x^2})+F_1'(-\frac1{x^2})+2x\frac{\partial F_2'}{\partial y}\\ &=(F_{11}''(\frac1x)+F_{12}''2y)(-\frac y{x^2})+F_1'(-\frac1{x^2})+2x(F_{21}''(\frac1x)+F_{22}''2y)\\ \end{aligned}

隱函數求導

F ( x , y , z ) = 0       z = z ( x , y )       F ( x , y , z ( x , y ) ) = 0 \begin{aligned} &F(x,y,z)=0\implies z=z(x,y)\implies F(x,y,z(x,y))=0 \end{aligned}

F
1x
2y
3z
x
y

F x = F x = F 1 + F z z x = 0       { z x = F x F z z y = F y F z \begin{aligned} &\frac{\partial F}{\partial x}=F_x'=F_1'+F_z'\frac{\partial z}{\partial x}=0\implies\begin{cases}\frac{\partial z}{\partial x}=-\frac{F_x'}{F_z'}\\\frac{\partial z}{\partial y}=-\frac{F_y'}{F_z'}\end{cases} \end{aligned}

1. z = z ( x , y ) ln z + e z 1 = x y z x ( 2 , 1 2 ) . ln z + e z 1 = x y       1 z z x + e z 1 z x = y x = 2 , y = 1 2 , z = 1 ; z x = 1 4 . F ( x , y , z ) = ln z + e z 1 x y = o       z x = F x F z = y 1 z + e z 1 ( 2 , 1 x , 1 ) = 1 4 2. z = z ( x , y ) F ( x + z y , y + z x ) = 0 F x z x + y z y . F 1 ( 1 + 1 y z x ) + F 2 z x x z x 2 = 0 ( x ) F 1 z y y z y 2 + F 2 ( 1 + 1 x z y ) = 0 ( y )       x z x + y z y = z x y . z x = F x F z = F 1 + F 2 ( z x 2 ) F 1 ( 1 y ) + F 2 ( 1 x ) z y = F y F z = F 1 ( z y 2 ) + F 2 F 1 ( 1 y ) + F 2 ( 1 x ) I = z x y 3. { u = f ( x u t , y u t , z u t ) g ( x , y , z ) , u x , u y [ ] u x = f 1 ( 1 u x t ) + f 2 ( u x t ) + f 3 ( z x u x t ) g 1 1 + g 2 0 + g 3 z x = 0 u x = f 1 g 3 f 3 g 1 g 3 [ 1 + t ( f 1 + f 2 + f 3 ) ] y u y = f 2 g 3 f 3 g 2 g 3 [ 1 + t ( f 1 + f 2 + f 3 ) ] \begin{aligned} 1.&\color{maroon}設z=z(x,y)由方程\ln z+e^{z-1}=xy確定,則\frac{\partial z}{\partial x}|_{(2,\frac12)}\\ 方法一.&由\ln z+e^{z-1}=xy\implies \frac1z\cdot z_x'+e^{z-1}\cdot z_x'=y\\ &由x=2,y=\frac12,代入前者,則z=1;代入後者,則z_x'=\frac14\\ 方法二.&令F(x,y,z)=\ln z+e^{z-1}-xy=o\\ &\implies\frac{\partial z}{\partial x}=-\frac{F_x'}{F_z'}=-\frac{-y}{\frac1z+e^{z-1}}|_{(2,\frac1x,1)}=\frac14\\ 2.&\color{maroon}設z=z(x,y)由方程F(x+\frac zy,y+\frac zx)=0確定,其中F由連續偏導數,求x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}\\ 方法一.&F_1'\cdot(1+\frac1y\frac{\partial z}{\partial x})+F_2'\cdot\frac{\frac{\partial z}{\partial x}\cdot x-z}{x^2}=0(對x)\\ &F_1'\cdot\frac{\frac{\partial z}{\partial y}\cdot y-z}{y^2}+F_2'\cdot(1+\frac1x\cdot\frac{\partial z}{\partial y})=0(對y)\\ &\implies x\cdot\frac{\partial z}{\partial x}+y\cdot\frac{\partial z}{\partial y}=z-xy\\ 方法二.&\frac{\partial z}{\partial x}=-\frac{F_x'}{F_z'}=-\frac{F_1'+F_2'(-\frac{z}{x^2})}{F_1'(\frac1y)+F_2'(\frac1x)}\\ &\frac{\partial z}{\partial y}=-\frac{F_y'}{F_z'}=-\frac{F_1'(-\frac{z}{y^2})+F_2'}{F_1'(\frac1y)+F_2'(\frac1x)}\\ &I=z-xy\\ 3.&\color{maroon}設\begin{cases}u=f(x-ut,y-ut,z-ut)\\g(x,y,z)\end{cases},求\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}\\ &[分析]一般有幾個方程,就有幾個因變量,其餘的字母都是自變量\\ &\frac{\partial u}{\partial x}=f_1'\cdot(1-\frac{\partial u}{\partial x}t)+f_2'\cdot(-\frac{\partial u}{\partial x}t)+f_3'\cdot(\frac{\partial z}{\partial x}-\frac{\partial u}{\partial x}t)\\ &g_1'\cdot1+g_2'\cdot0+g_3'\cdot\frac{\partial z}{\partial x}=0\\ &解得\frac{\partial u}{\partial x}=\frac{f_1'g_3'-f_3'g_1'}{g_3'[1+t(f_1'+f_2'+f_3')]}\\ &對y求偏導數同樣可得\frac{\partial u}{\partial y}=\frac{f_2'g_3'-f_3'g_2'}{g_3'[1+t(f_1'+f_2'+f_3')]}\\ \end{aligned}

應用

無條件極值

1. { f x ( x 0 , y 0 ) = 0 f y ( x 0 , y 0 ) = 0 2. { A > 0 A C B 2 > 0       A < 0 A C B 2 > 0       A C B 2 < 0       [ ] A = f x x ( x 0 , y 0 ) , B = f x y ( x 0 , y 0 ) , C = f y y ( x 0 , y 0 ) \begin{aligned} 1.&必要條件\begin{cases}f_x'(x_0,y_0)=0\\f_y'(x_0,y_0)=0\end{cases}\\ 2.&充分條件\begin{cases}A>0且AC-B^2>0\implies極小\\A<0且AC-B^2>0\implies極大\\AC-B^2<0\implies非極值點\end{cases}\\ [注]&記A=f_{xx}''(x_0,y_0),B=f_{xy}''(x_0,y_0),C=f_{yy}''(x_0,y_0)\\ \end{aligned}

條件極值

1. F ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) , 2. { F x = f x ( x , y ) + λ φ x ( x , y ) = 0 F y = f y ( x , y ) + λ φ y ( x , y ) = 0 F λ = φ ( x , y ) = 0 3. \begin{aligned} 1.&構造拉格朗日函數F(x,y,\lambda)=f(x,y)+\lambda\varphi(x,y),\\ 2.&令\begin{cases}F_x'=f_x'(x,y)+\lambda\varphi_x'(x,y)=0\\F_y'=f_y'(x,y)+\lambda\varphi_y'(x,y)=0\\F_\lambda'=\varphi(x,y)=0\end{cases}\\ 3.&比較上述各函數值的大小,最大的爲最大值,最小的爲最小值\\ \end{aligned}

1. z = z ( x , y ) ( x 2 + y 2 ) z + ln z + 2 ( x + y + 1 ) = 0 z = z ( x , y ) 2 x z + ( x 2 + y 2 ) z x + 1 z z x + 2 = 0       2 y z + ( x 2 + y 2 ) z y + 1 z z y + 2 = 0 z x = 0 , z y = 0 , x = y = 1 z 2 z + ln z 4 z + 2 = 0       z = 1 x = y = 1 , z = 1       2 z + 2 x z x + 2 x z x + ( x 2 + y 2 ) z x x + z x x z z x 2 z 2 = 0       2 x z y + 2 y z x + ( x 2 + y 2 ) z x y + z x y z z x z y z 2 = 0 A = z x x ( 1 , 1 ) = 2 3 = c ( ) B = z x y ( 1 , 1 ) = 0 , B 2 A C < 0 A < 0 z ( 1 , 1 ) = 1 2. u = x 2 + y 2 + z 2 z = x 2 + y 2 x + y + z = 4 F ( x , y , z , λ , μ ) = x 2 + y 2 + z 2 + λ ( x 2 + y 2 z ) + μ ( x + y + z 4 ) { F x = 2 x + 2 λ x + μ = 0 F y = 2 y + 2 x y + μ = 0 F z = 2 z λ + μ = 0 F λ = x 2 + y 2 z = 0 F μ = x + y + z 4 = 0 P 1 ( 1 , 1 , 2 ) , P 2 ( 2 , 2 , 8 ) u ( P 1 ) = 6 , u ( P 2 ) = 72 3. u = x 2 + y 2 + z 2 ( x y ) 2 z 2 = 1 F ( x , y , z , λ ) = x 2 + y 2 + z 2 + λ ( ( x y ) 2 z 2 1 ) { F x = 2 x + 2 λ ( x y ) = 0 F y = 2 y 2 λ ( x y ) = 0 F z = 2 z 2 λ z = 0 F λ = ( x y ) 2 z 2 1 = 0 P 1 ( 1 2 , 1 2 , 0 ) , P 2 ( 1 2 , 1 2 , 0 ) u ( P 1 ) = u ( P 2 ) = 2 2 4. f ( x , y ) = x 2 y 2 + 2 D : x 2 + y 2 4 1 f ( x , y ) , f x = 2 x = 0 , f y = 2 y = 0 F ( x , y , λ ) F ( x , y , λ ) = x 2 y 2 + λ ( x 2 + y 2 4 1 ) F x = 2 x + 2 λ x = 0 , F y = 2 y + λ 2 y = 0 F x = x 2 + y 2 4 1 = 0 f ( 0 , 0 ) = 2 , f ( + 1 , 0 = 3 ) , f ( 0 , + 2 ) = 2 5. f ( x , y ) = x + x y x 2 y 2 D : 0 x 1 , 0 y 2 f ( x , y ) , f x = 1 + y 2 x = 0 , f y = x 2 y = 0 ( ) L 1 : y = 0 ( 0 x 1 )       f ( x , 0 ) = x x 2 = φ ( x )       ( 1 2 , 0 ) , ( 0 , 0 ) , ( 1 , 0 ) L 2 : x = 1 ( 0 < y < 2 )       f ( 1 , y ) = y y 2       ( 1 , 1 2 ) L 3 : y = 2 ( 0 x 1 )       f ( x , 2 ) = 3 x x 2 4       ( 0 , 2 ) , ( 1 , 2 ) L 4 : x = 0 ( 0 < y < 2 )       f ( 0 , y ) = y 2 1 3 4 \begin{aligned} 1.&\color{maroon}設z=z(x,y)由方程(x^2+y^2)z+\ln z+2(x+y+1)=0確定,求z=z(x,y)的極值\\ &由方程得2xz+(x^2+y^2)z_x'+\frac1zz_x'+2=0\\ &\implies2yz+(x^2+y^2)z_y'+\frac1zz_y'+2=0\\ &令z_x'=0,z_y'=0,則x=y=-\frac1z代入第一個式子\\ &得:\frac2z+\ln z-\frac4z+2=0\implies z=1\\ &\therefore x=y=-1,z=1\\ &\implies 2z+2xz_x'+2xz_x'+(x^2+y^2)z_{xx}''+\frac{z_{xx}''\cdot z-z_x'^2}{z^2}=0\\ &\implies 2xz_y'+2yz_x'+(x^2+y^2)z_{xy}''+\frac{z_{xy}''\cdot z-z_x'\cdot z_y'}{z^2}=0\\ &A=z_{xx}''(-1,-1)=-\frac23=c(對稱性)\\ &B=z_{xy}''(-1,-1)=0,由B^2-AC<0且A<0\\ &故z(-1,-1)=1極大值\\ 2.&\color{maroon}求函數u=x^2+y^2+z^2在條件z=x^2+y^2及x+y+z=4下的最大值與最小值\\ &令F(x,y,z,\lambda,\mu)=x^2+y^2+z^2+\lambda(x^2+y^2-z)+\mu(x+y+z-4)\\ 得&\begin{cases}F_x'=2x+2\lambda x+\mu=0\\ F_y'=2y+2xy+\mu=0\\ F_z'=2z-\lambda+\mu=0\\ F_\lambda'=x^2+y^2-z=0\\ F_\mu'=x+y+z-4=0\end{cases}解得:P_1(1,1,2),P_2(-2,-2,8)\\ &由u(P_1)=6爲最小值,且u(P_2)=72爲最大值\\ 3.&\color{maroon}求u=\sqrt{x^2+y^2+z^2}在(x-y)^2-z^2=1條件下的最小值\\ &令F(x,y,z,\lambda)=x^2+y^2+z^2+\lambda((x-y)^2-z^2-1)\\ &\begin{cases}F_x'=2x+2\lambda(x-y)=0\\ F_y'=2y-2\lambda(x-y)=0\\ F_z'=2z-2\lambda z=0\\ F_\lambda'=(x-y)^2-z^2-1=0\end{cases}解得:P_1(-\frac12,\frac12,0),P_2(\frac12,-\frac12,0)\\ &由u(P_1)=u(P_2)=\frac{\sqrt{2}}2\\ 4.&\color{maroon}求f(x,y)=x^2-y^2+2在橢圓域D:x^2+\frac{y^2}4\leq1上的最大值與最小值\\ &內部\to f(x,y),由f_x'=2x=0,f_y'=-2y=0\\ &邊界\to F(x,y,\lambda)\\ &F(x,y,\lambda)=x^2-y^2+\lambda(x^2+\frac{y^2}4-1)\\ &由F_x'=2x+2\lambda x=0,F_y'=-2y+\frac{\lambda}2y=0\\ &F_x'=x^2+\frac{y^2}4-1=0\\ &f(0,0)=2,f(+-1,0=3)最大,f(0,+-2)=-2最小\\ 5.&\color{maroon}求f(x,y)=x+xy-x^2-y^2在閉區域D:0\leq x\leq1,0\leq y\leq2上得最大值與最小值\\ &內部\to f(x,y),由f_x'=1+y-2x=0,f_y'=x-2y=0\\ &邊界(代入法)L_1:y=0(0\leq x\leq1)\implies f(x,0)=x-x^2=\varphi(x)\implies (\frac12,0),(0,0),(1,0)\\ &L_2:x=1(0<y<2) \implies f(1,y)=y-y^2\implies (1,\frac12)\\ &L_3:y=2(0\leq x\leq1)\implies f(x,2)=3x-x^2-4\implies (0,2),(1,2)\\ &L_4:x=0(0<y<2) \implies f(0,y)=-y^2\\ &比較得最大值爲\frac13,最小值爲-4 \end{aligned}