03042020 Latex Ref





Latex

Katex1

Repeating fractions

$\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} \equiv 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }$

1 ( ϕ 5 ϕ ) e 2 5 π 1 + e 2 π 1 + e 4 π 1 + e 6 π 1 + e 8 π 1 + \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} \equiv 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\cdots} } } }


Summation notation

$\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$

( k = 1 n a k b k ) 2 ( k = 1 n a k 2 ) ( k = 1 n b k 2 ) \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)


Sum of a Series

$\displaystyle\sum_{i=1}^{k+1}i$

i = 1 k + 1 i \displaystyle\sum_{i=1}^{k+1}i

$\displaystyle= \left(\sum_{i=1}^{k}i\right) +(k+1)$

= ( i = 1 k i ) + ( k + 1 ) \displaystyle= \left(\sum_{i=1}^{k}i\right) +(k+1)

$\displaystyle= \frac{k(k+1)}{2}+k+1$

= k ( k + 1 ) 2 + k + 1 \displaystyle= \frac{k(k+1)}{2}+k+1

$\displaystyle= \frac{k(k+1)+2(k+1)}{2}$

= k ( k + 1 ) + 2 ( k + 1 ) 2 \displaystyle= \frac{k(k+1)+2(k+1)}{2}

$\displaystyle= \frac{(k+1)(k+2)}{2}$

= ( k + 1 ) ( k + 2 ) 2 \displaystyle= \frac{(k+1)(k+2)}{2}

$\displaystyle= \frac{(k+1)((k+1)+1)}{2}$

= ( k + 1 ) ( ( k + 1 ) + 1 ) 2 \displaystyle= \frac{(k+1)((k+1)+1)}{2}


Product notation

$\displaystyle\text{ for }\lvert q\rvert < 1.$

 for  q < 1. \displaystyle\text{ for }\lvert q\rvert < 1.

$= \displaystyle \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},$

= j = 0 1 ( 1 q 5 j + 2 ) ( 1 q 5 j + 3 ) , = \displaystyle \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},

$\displaystyle1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots$

1 + q 2 ( 1 q ) + q 6 ( 1 q ) ( 1 q 2 ) + \displaystyle1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots


Inline math[^4]
<span class="math">...</span>

And $k_{n+1} = n^2 + k_n^2 - k_{n-1}$, text.

And k n + 1 = n 2 + k n 2 k n 1 k_{n+1} = n^2 + k_n^2 - k_{n-1} ​, text.


Greek Letters

$\Gamma\ \Delta\ \Theta\ \Lambda\ \Xi\ \Pi\ \Sigma\ \Upsilon\ \Phi\ \Psi\ \Omega$

Γ   Δ   Θ   Λ   Ξ   Π   Σ   Υ   Φ   Ψ   Ω \Gamma\ \Delta\ \Theta\ \Lambda\ \Xi\ \Pi\ \Sigma\ \Upsilon\ \Phi\ \Psi\ \Omega

$\alpha\ \beta\ \gamma\ \delta\ \epsilon\ \zeta\ \eta\ \theta\ \iota\ \kappa\ \lambda\ \mu\ \nu\ \xi\ \omicron\ \pi\ \rho\ \sigma\ \tau\ \upsilon\ \phi\ \chi\ \psi\ \omega$

α   β   γ   δ   ϵ   ζ   η   θ   ι   κ   λ   μ   ν   ξ   ο   π   ρ   σ   τ   υ   ϕ   χ   ψ   ω \alpha\ \beta\ \gamma\ \delta\ \epsilon\ \zeta\ \eta\ \theta\ \iota\ \kappa\ \lambda\ \mu\ \nu\ \xi\ \omicron\ \pi\ \rho\ \sigma\ \tau\ \upsilon\ \phi\ \chi\ \psi\ \omega

$\varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi$

ε   ϑ   ϖ   ϱ   ς   φ \varepsilon\ \vartheta\ \varpi\ \varrho\ \varsigma\ \varphi


Arrows

$\gets\ \to\ \leftarrow\ \rightarrow\ \uparrow\ \Uparrow\ \downarrow\ \Downarrow\ \updownarrow\ \Updownarrow$

                  \gets\ \to\ \leftarrow\ \rightarrow\ \uparrow\ \Uparrow\ \downarrow\ \Downarrow\ \updownarrow\ \Updownarrow

$\Leftarrow\ \Rightarrow\ \leftrightarrow\ \Leftrightarrow\ \mapsto\ \hookleftarrow$

          \Leftarrow\ \Rightarrow\ \leftrightarrow\ \Leftrightarrow\ \mapsto\ \hookleftarrow

$\leftharpoonup\ \leftharpoondown\ \rightleftharpoons\ \longleftarrow\ \Longleftarrow\ \longrightarrow$

          \leftharpoonup\ \leftharpoondown\ \rightleftharpoons\ \longleftarrow\ \Longleftarrow\ \longrightarrow

$\Longrightarrow\ \longleftrightarrow\ \Longleftrightarrow\ \longmapsto\ \hookrightarrow\ \rightharpoonup$

          \Longrightarrow\ \longleftrightarrow\ \Longleftrightarrow\ \longmapsto\ \hookrightarrow\ \rightharpoonup

LaTeX code:
$\rightharpoondown\ \leadsto\ \nearrow\ \searrow\ \swarrow\ \nwarrow$

          \rightharpoondown\ \leadsto\ \nearrow\ \searrow\ \swarrow\ \nwarrow


Symbols

$\surd\ \barwedge\ \veebar\ \odot\ \oplus\ \otimes\ \oslash\ \circledcirc\ \boxdot\ \bigtriangleup$

                  \surd\ \barwedge\ \veebar\ \odot\ \oplus\ \otimes\ \oslash\ \circledcirc\ \boxdot\ \bigtriangleup

$\bigtriangledown\ \dagger\ \diamond\ \star\ \triangleleft\ \triangleright\ \angle\ \infty\ \prime\ \triangle$

                  \bigtriangledown\ \dagger\ \diamond\ \star\ \triangleleft\ \triangleright\ \angle\ \infty\ \prime\ \triangle


Calculus

$\int u \frac{dv}{dx}\,dx=uv-\int \frac{du}{dx}v\,dx$

u d v d x d x = u v d u d x v d x \int u \frac{dv}{dx}\,dx=uv-\int \frac{du}{dx}v\,dx

$f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x}$

f ( x ) = f ^ ( ξ ) e 2 π i ξ x f(x) = \int_{-\infty}^\infty \hat f(\xi)\,e^{2 \pi i \xi x}

$\oint \vec{F} \cdot d\vec{s}=0$

F d s = 0 \oint \vec{F} \cdot d\vec{s}=0


Lorenz Equations

$\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned}$

x ˙ = σ ( y x ) y ˙ = ρ x y x z z ˙ = β z + x y \begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned}

Cross Product

$\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix}$

V 1 × V 2 = i j k X u Y u 0 X v Y v 0 \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix}


Accents

$\hat{x}\ \vec{x}\ \ddot{x}$

x ^   x   x ¨ \hat{x}\ \vec{x}\ \ddot{x}


Stretchy brackets

$\left(\frac{x^2}{y^3}\right)$

( x 2 y 3 ) \left(\frac{x^2}{y^3}\right)


Evaluation at limits

$\left.\frac{x^3}{3}\right|_0^1$

x 3 3 0 1 \left.\frac{x^3}{3}\right|_0^1


Case definitions

$f(n) = \begin{cases} \frac{n}{2}, & \text{if } n\text{ is even} \\ 3n+1, & \text{if } n\text{ is odd} \end{cases}$

f ( n ) = { n 2 , if  n  is even 3 n + 1 , if  n  is odd f(n) = \begin{cases} \frac{n}{2}, & \text{if } n\text{ is even} \\ 3n+1, & \text{if } n\text{ is odd} \end{cases}


Maxwell’s Equations

$\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}$

× B 1 c E t = 4 π c j E = 4 π ρ × E + 1 c B t = 0 B = 0 \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}

$\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\[1em] \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\[0.5em] \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\[1em] \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}$

× B 1 c E t = 4 π c j E = 4 π ρ × E + 1 c B t = 0 B = 0 \begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\[1em] \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\[0.5em] \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\[1em] \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}


Statistics

$\frac{n!}{k!(n-k)!} = {^n}C_k$

n ! k ! ( n k ) ! = n C k \frac{n!}{k!(n-k)!} = {^n}C_k

${n \choose k}$

( n k ) {n \choose k}


Fractions on fractions

$\frac{\frac{1}{x}+\frac{1}{y}}{y-z}$

1 x + 1 y y z \frac{\frac{1}{x}+\frac{1}{y}}{y-z}


n-th root

$\sqrt[n]{1+x+x^2+x^3+\ldots}$

1 + x + x 2 + x 3 + n \sqrt[n]{1+x+x^2+x^3+\ldots}


Matrices

$\begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix}$

( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) \begin{pmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{pmatrix}

$begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$

[ 0 0 0 0 ] \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}


Punctuation

$(x) = \sqrt{1+x} \quad (x \ge -1)$

f ( x ) = 1 + x ( x 1 ) f(x) = \sqrt{1+x} \quad (x \ge -1)

$f(x) \sim x^2 \quad (x\to\infty)$

f ( x ) x 2 ( x ) f(x) \sim x^2 \quad (x\to\infty)

$f(x) = \sqrt{1+x}, \quad x \ge -1$

f ( x ) = 1 + x , x 1 f(x) = \sqrt{1+x}, \quad x \ge -1

$f(x) \sim x^2, \quad x\to\infty$

f ( x ) x 2 , x f(x) \sim x^2, \quad x\to\infty


Γ \Gamma function

$\Gamma(n) = (n-1)!\quad\forall n\in\mathbb N$

Γ ( n ) = ( n 1 ) ! n N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N


Euler integral

$\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.$

Γ ( z ) = 0 t z 1 e t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,.





  1. katext - ref ↩︎