菜鸟学院
欄目
標籤
【Bias 02】BENCHMARKING NEURAL NETWORK ROBUSTNESS TO COMMON CORRUPTIONS AND PERTURBATIONS
時間 2021-06-11
標籤
Bias
欄目
系統網絡
简体版
原文
原文鏈接
摘要 對圖像分類的魯棒性評估,建立benchmark。我們的第一個benchmark是ImageNet-C,它可以評估哪一個分類器更適合安全關鍵的應用。第二個benchmark是ImageNet-P,使得研究人員可以衡量分類器對常見擾動的魯棒性。並且本文探究加強腐蝕和擾動的魯棒性,本文甚至發現bypassed adversarial defense提供了對於常見擾動的魯棒性。 Related
>>阅读原文<<
相關文章
1.
【Bias 03】Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
2.
關於Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks的理解
3.
[paper]Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
4.
【數據增強】Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
5.
Adversarial Perturbations
6.
【GNN實驗新基準】Benchmarking Graph Neural Networks
7.
[paper]Towards Evaluating the Robustness of Neural Networks(C&W)
8.
Introduction to neural networks
9.
How to reduce bias and variance ?
10.
Introduction To Neural Networks
更多相關文章...
相關標籤/搜索
bias
robustness
perturbations
benchmarking
neural
common
02
easyui+common
common@2.3.1
to@8
系統網絡
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
DepOvs簡介
2.
中期科技ZONTREE智慧公廁,助力高速公路服務區的五星級評比
3.
linux(六)——xshell和winscp/ftp安裝
4.
CakePHP namespace命令空間 use
5.
2020年危險化學品生產單位主要負責人考試試卷及危險化學品生產單位主要負責人實操考試視頻
相關文章
1.
【Bias 03】Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
2.
關於Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks的理解
3.
[paper]Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
4.
【數據增強】Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
5.
Adversarial Perturbations
6.
【GNN實驗新基準】Benchmarking Graph Neural Networks
7.
[paper]Towards Evaluating the Robustness of Neural Networks(C&W)
8.
Introduction to neural networks
9.
How to reduce bias and variance ?
10.
Introduction To Neural Networks
>>更多相關文章<<